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In 1993, alternative normalized structure factors for incommensurately

modulated structures were de®ned [Lam, Beurskens & van Smaalen (1993).

Acta Cryst. A49, 709±721]. The probability distribution associated with the

structure invariants E(ÿH)E(H0)E(H ÿ H0) has approximately the same

functional form as the Cochran distribution. It was shown, however, that

triplet-phase relations are relatively less reliable when satellites are involved [de

Gelder, IsraeÈ l, Lam, Beurskens, van Smaalen, Fu & Fan (1996). Acta Cryst. A52,

947±954]. In the present paper, an alternative approach is presented: instead of

studying the distribution of a three-phase invariant, the probability distribution

of the phase sum of two ®rst-order satellite re¯ections (h,k, l,1 and h0,k0, l0,ÿ1)

has been derived under the assumption that the phase of the associated main

re¯ection (h � h0,k � k0, l � l0,0) can be calculated from the known main (or

averaged) structure. Intensive tests with randomly generated arti®cial structures

and one real structure show a signi®cant improvement of direct-methods

phase-sum statistics. Functional similarities with conventional direct methods,

employing normalized structure factors and the Cochran distribution, are

discussed.

1. Introduction

In the past, normalized structure factors (E) were de®ned for

main re¯ections and satellite re¯ections of incommensurately

modulated structures (Lam et al., 1992, 1993, 1994). The

conventional de®nition of normalized structure factors is

E�H� � F�H�=g�H�; �1�
where g(H) is a real function that compensates for the fall-off

of the scattering power of the atoms with increasing sin(�),

including the effect of the overall temperature factor. By

introduction of a modi®ed expression for the g(H) that

includes the overall modulation effects, this de®nition was

extended to modulated structures. Different expressions for

g(H) were required for main re¯ections and satellites. The

statistical distributions of the magnitudes of the newly de®ned

E values seem to obey similar distributions to those known for

non-modulated crystals.

The
P

2 relationship

'�H� � '�H0� � '�HÿH0� �2�
(� means `probably close to'), which is more reliable if all

three corresponding |E| values are large, was tested for a series

of incommensurately modulated structures by de Gelder et al.

(1996). This was performed by determining the probability

density of the three-phase structure invariant, being de®ned as

the phase sum

��H;H0� � '�ÿH� � '�H0� � '�HÿH0�
and given by the Cochran distribution1 (Cochran, 1955):

P��� � �2�I0����ÿ1 exp�� cos����; �3�
where In is a modi®ed Bessel function of the ®rst kind and

��H;H0� � 2CjE�ÿH�E�H0�E�HÿH0�j �4�
with

C �PN
j�1

Z3
j

PN
j�1

Z2
j

" #ÿ3=2

; �5�

1 For centrosymmetric structures, the phases ' are restricted to 0 and �. The
probability that the sign relationship s�H� � s�H0�s�HÿH0� is true is given
by Cochran & Woolfson (1955) as P��x� � 1

2� 1
2 tanh�x� with x�H;H0� �

CjE�ÿH�E�H0�E�HÿH0�j � ��H;H0�=2.
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N is the number of atoms in the unit cell. For equal-atom

structures, C � Nÿ1=2.

From these tests, it was concluded that the probability

distribution associated with these structure invariants

approximately has the same functional form as the Cochran

distribution. However, when in triplet-phase relations (®rst-

order) satellite re¯ections are involved, it appears that they

are less reliable than when only main re¯ections are involved

(de Gelder et al., 1996). Since probability distributions have

not been mathematically derived so far, it may well be possible

that Cochran's description of the probability of triplet phase

relations should not be applied as such when satellite re¯ec-

tions are involved. Therefore, an investigation to obtain a

better theoretical foundation and practical approach was

necessary.

This report deals with the derivation of the probability

distribution of structure factors of two ®rst-order satellite

re¯ections; the validity and the actual applicability of this new

distribution function were tested and compared to the

Cochran distribution applying the E values as de®ned by Lam

et al. (1993).

2. The derivation of the probability distribution of two
satellite structure factors

In a three-dimensionally periodic crystallite or single crystal

with reciprocal lattice (a�, b�, c�), the structure factor for the

direction K � ha� � kb� � lc� can be expressed as a function

of the contents of a single unit cell since all unit cells are

assumed to be identical,

FK �
PN
j�1

fj�K� exp�2�iK � rj�: �6�

In contrast, in modulated crystals, the atomic positions rj are

not constant but they can vary from cell to cell as a result of

one (or more) modulation waves. This report discusses the

in¯uence of a single displacive modulation wave only. Such a

modulation leads to an additional index (m) with respect to

the modulation vector q in order to index the total diffraction

pattern,

q � �a� � �b� � 
c�: �7�
As a result, the satellite diffraction vectors are expressed using

four integer indices (h, k, l, m),

H � K�mq: �8�
In this report, only ®rst-order satellites (m � �1) will be

considered.

A useful way to handle the unit-cell dependency of rj is

to introduce so-called `basic' coordinates rj(b), which are

assumed to be constant from cell to cell, on top of which

atomic modulation functions uj are present. Together they

determine the actual position rjn of atom number j in a unit cell

referred to by a lattice vector n,

rjn � rj�b� � uj�0� � n� ujfq � �rj�b� � n�g: �9�

The atomic modulation functions are assumed to be periodic

functions [uj�t� � uj�t � 1�] so they can be expanded in a

Fourier series (e.g. Yamamoto, 1982; Perez-Mato et al., 1986).

The zero-order term of this series [uj(0)] is usually combined

with rj(b) into the average position rj(0),

rj�0� � rj�b� � uj�0�: �10�
In practice, the determination of an incommensurately

modulated structure involving main re¯ections (m � 0) only

results in the average structural positions rj(0). Owing to the

modulation, the rj(0) should not be looked upon strictly as

being point positions but be interpreted as being the centers of

the area(s) in the unit cell to which the possible positions rjn

are limited.

Occasionally, one encounters in the literature q � rj(0) as

argument of uj instead of q � rj(b). The latter is more logical

because otherwise uj contains its own zero term. From the

point of deriving joint probability distributions, it does not

make much difference since either choice results in rj changing

continuously from cell to cell. Moreover, incommensurately

modulated structures exist for which no basic structural

positions can be de®ned (Janner & Janssen, 1980).

2.1. Structure-factor expressions in the presence of a single
displacive modulation. No symmetry (except identity opera-
tion)

In this section, only the basic expressions of the structure

factor will be discussed, the role of the superspace-group

symmetry is left out.

In the presence of a displacive modulation, the structure

factor scattered in the direction H can be expressed as

FH �
PN
j�1

P
n fj�H� exp�2�iH � rjn�; �11�

in which now an explicit summation is present over all

contributing unit cells, each cell being referred to by a

different lattice vector n while the atomic positions rjn are

de®ned as in (9). It is assumed that the atomic scattering

factors are not modulated, so fjn(H) � fj(H), but they are

allowed to be complex valued as a result of anomalous scat-

tering:

fj�H� � jfj�H�j exp�i�j�H��: �12�
Taking (8), (9) and (10) into account, (11) becomes

FH �
PN
j�1

P
n fj�H� expf2�i�K � rj�0� �mtjn�g exp�2�iH � uj�tjn��

�13�
with tjn � q � �rj�b� � n�.

Because q is incommensurate with respect to (a�, b�, c�), tjn
can take any value in the interval [0, 1] when n ranges over all

unit cells. In practice, the summation over the contributing tjn
(all unit cells) is usually carried out by replacing the summa-

tion by an integral involving a continuous variable �j [0, 1],

which is often referred to as an `internal' or `fourth-dimen-

sional' variable. Note that �j depends explicitly on j because it



is de®ned in relation to rj(b). By means of the integration, via

uj, a `string' of atomic positions is de®ned that in fact corre-

sponds with the atomic modulation function,

FH �
PN
j�1

fj�H� exp�2�iK � rj�0��

� R1
0

exp�2�im�j� exp�2�iH � uj��j�� d�j: �14�

After choosing a displacive modulation function, the inte-

gration of (14) can be carried out so an internal-coordinate-

independent FH is obtained. At this point, we notice that this

approach, common practice in analysis of incommensurately

modulated structures and therefore referred to here as

`conventional', affects not only the satellite structure-factor

expressions but also (the derivation of) their joint probability

distribution. Thus, before actually discussing the latter in more

detail, we will brie¯y outline the general derivation procedure

and argue that also an alternative to the `conventional'

approach is possible. Mathematical details of this alternative

will be discussed elsewhere.

The derivation of a joint probability distribution of struc-

ture factors in normal direct methods involves the de®nition of

a series expansion in moments, each moment consisting of a

product of trigonometric parts of one or more structure

factors. When this expansion in the moments is set up, the

primitive random variables that are associated with the atomic

coordinates are kept constant. Only after the moments

expansion has been set up can the actual contribution of

each moment to the probability distribution be calculated

by allowing the primitive random variables to take on their

possible values. In this way, the in¯uence of the primitive

random variables on the joint distribution of structure factors

can be assessed. In the absence of any prior knowledge, the

primitive random variables are assumed to be uniformly

distributed in the unit cell. This comes down to integrating rj

on the interval [0, 1].

In the case of satellite structure factors, the rj(0) together

with �j determine a continuous sequence of atomic positions

rjn of an atom (labeled j) in the subsequent unit cells (labeled

n). The prior functional distribution is described by means of a

modulation function. The coordinate function of rj(0) together

with �j suggests a joint probability distribution should be set

up with a structure-factor expression like (13) and the �j

integration be carried out only after setting up the joint

distribution of structure factors.

2.1.1. Sinusoidal displacive modulations. In descriptions of

modulated crystals, it should be allowed for that with each

atom j a different atomic modulation function uj is associated.

In literature, various expressions have been proposed for a

displacive uj. In this report, we will consider only harmonic

sinusoidal type modulations that in its general form can be

noted (Petricek et al., 1985, PetrÏõÂcÏek & Coppens, 1988;

Paciorek & Kucharczyk, 1985; Steurer, 1987) as

uj�tjn� � Uj sin�2��tjn ÿ	jk��; k � 1; 2; 3; �15�

in which six independent variables are present, the three

components of Uj and three phase components 	jk

(k � 1; 2; 3). Expression (15) can be rearranged into an

expression involving two (independent) vectors Vj and Wj

(McConnell & Heine, 1984):

uj�tjn� � Vj sin�2�tjn� �Wj cos�2�tjn�: �16�
A simpler atomic modulation function, referred to as a recti-

linear modulation (Paciorek & Kucharczyk, 1985) is arrived at

under the assumption that the phase components 	jk along

the three axes are identical (	j � 	jk for k � 1; 2; 3),

uj�tjn� � Uj sin�2��tjn ÿ	j�� with 	 2 �0; 1�: �17�
This model, which has been applied amongst others by

Petricek et al. (1985), contains only four variables, Uj and 	j,

for each modulated atom.

2.2. Structure-factor expressions in the presence of a
sinusoidal modulation

After inserting a modulation expression like (16) or (17) in

(13) and changing over to a continuous variable �j, like from

(13) to (14), the integral involving the continuous variable �j

can be carried out if exp[2�iH � uj(�j)] is expanded in a series

of Bessel functions using

exp�iz sin���� � P1
n�ÿ1

Jÿn�z� exp�ÿin��: �18�

In the case of the rectilinear modulation (17), an attractive

simpli®cation of the structure factor is arrived at,

FH �
PN
j�1

fj�H� exp�2�iK � rj�0��Jÿm�2�H �Uj� exp�ÿi2�m	j�

�19�
[see e.g. equation (6) in Petricek et al. (1985)]. This expression

has been shown to be very useful in the re®nement of

modulated structures.

The same procedure for the general sinusoidal modulation

(16) gives the integralR1
0

P1
n1�ÿ1

P1
n2�ÿ1

Jÿn1�2�H � Vj�Jÿn2�2�H �Wj�

� exp�2�i��mÿ n1 ÿ n2� ÿ in2�=2� d�: �20�
After interchanging the integral and the summations, the

integral can be carried out, leading to the condition

n2 � mÿ n1. Using Jÿn�x� � Jn�x� exp�i�n�, the integral part

of (20) becomes

exp�ÿim�=2�P
n1

Jn1�2�H � Vj�Jn1ÿm�2�H �Wj� exp�i3�n1=2�:
�21�

After applying Graf's theorem (Abramowitz & Stegun, 1965),

Jn�!� exp�in�� � P1
k�ÿ1

Jn�k�u�Jk�v� exp�ik�� �22�

with
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! � �u2 � v2 ÿ 2uv cos����1=2

and

exp�i�� � !ÿ1�uÿ v exp�ÿi���
to (21), the structure-factor expression is obtained as

FH �
PN
j�1

fj�H� exp�2�iK � rj�0��Jÿm�!j� exp�im��j ÿ �=2��

�23�

!j � 2�jHj�jVjj2 cos2� 0� � jWjj2 cos2� 00��1=2

H � Vj � jHjjVjj cos� 0�; H �Wj � jHjjWjj cos� 00�:
See Petricek et al. (1985) and PetrÏõÂcÏek & Coppens (1988) for

an alternative approach.

2.3. The joint probability distribution of structure factors in
the case of a single displacive sinusoidal modulation

2.3.1. Random and primitive random variables. The

problem of phasing satellite structure factors of incommen-

surately modulated structures by means of direct methods

differs considerably from the phase problem in ab initio direct

methods. The mathematical model behind the latter is based

upon N primitive random variables, each one being associated

with one of the N atomic positions. Lack of knowledge

concerning the atomic positions is translated into the model

that the N primitive random variables are independent and

uniformly distributed in the unit cell.

In incommensurately modulated compounds, the phase

problem of the main re¯ections (K) can be assumed to be

solved by a standard ab initio technique so that the set of

phased structure factors (FK) determines the average struc-

tural model [rj(0)].

Taking this structural model as a start, the problem is to

phase the satellite structure factors correctly or, equivalently,

to ®nd the correct parameter values of the atomic modulation

functions.2 This has the following consequences:

(i) If the FK, and correspondingly rj(0), are (assumed to be)

completely known, it is not necessary to consider the FK as

random variables, i.e. as functions of primitive random vari-

ables for which a uniform distribution in the unit cell has to be

assumed.

(ii) In contrast to FK, the phases of FH are unknown while

the FH are functions of the atomic modulation functions.

Because the latter determine the cell-dependent atomic

positions rjn, it seems a reasonable assumption to take the

atomic modulation function parameters as primitive random

variables. In the case of a rectilinear modulation, this comes

down to taking the Uj and the 	j as the primitive random

variables while, for the general sinusoidal modulation, the Vj

and Wj ful®l this role.

Like in normal direct methods, the primitive random vari-

ables are assumed to be independently distributed and, unless

more precise information is available, also to be uniformly

distributed within a certain range. Concerning the phase

parameters 	j, this comes down to a uniform distribution in

the interval [0, 1]. The magnitudes of the vectorial parameters

Uj in the rectilinear modulation and Vj and Wj for the

general modulation are certainly not uniformly distributed

over the complete unit cell. Two possible cases will be

considered in some detail:

(i) The magnitudes of the vectors, i.e. |U| in the case of a

rectilinear modulation or |V| and |W| in the case of a general

sinusoidal modulation, are assumed to be known, e.g. from a

®tting procedure like that devised by Lam et al. (1992), while

the orientation of the vector(s) is assumed to be arbitrary.

This approach reduces the problem to the calculation of

orientational averages, as will be discussed in the following

sections.

(ii) In addition to the orientational average of the vector(s),

their magnitudes are also not known. One option is to assume

a uniform distribution on the interval [0, |Umax|] .

2.4. The joint probability distribution of two first-order
satellite structure factors in the case of a single sinusoidal
displacive modulation

The joint probability distribution of two structure factors of

®rst-order satellites can be set up in the same way as described

in Peschar & Schenk (1991). Let us denote the ®rst-order

satellite re¯ections by H1 � K1 � q and H2 � K2 ÿ q and

consider the phase sum

�2 � '1 � '2 �24�

with '1 being the phase of satellite re¯ection H1 and '2 being

the phase of satellite re¯ection H2. In general, (24) will not be

a structure invariant. However, it is easily shown by calcu-

lating the moments of order N0 that (19) does become a

doublet phase sum invariant, as present between two

isomorphously related structure factors, if the modulation

parameters Uj and 	j (or Vj and Wj) are used as primitive

random variables. In order to show this, we follow the de®-

nition of the moments as given in Peschar & Schenk (1991)

and it is readily observed that the de®nition of the structure

factor therein is analogous to expressions (19) and (23)

provided the atomic scattering factors are now replaced

by fj(H) exp[2�iK �rj(0)] while the quantity exp(2�iH �rj),

which is associated with the primitive random variables,

is now replaced by Jÿm(2�H �Uj) exp(ÿi2�m	j) and

Jÿm(!j) exp[ÿim(�j ÿ �=2)] as de®ned in (19) and (23),

respectively. For simplicity, we will discuss now the former

only.

2.4.1. Rectilinear modulation. In view of the above and

referring to xx2±4 in Peschar & Schenk (1991), the moments

expression for two structure factors F(H1) and F(H2) in the

presence of a rectilinear modulation can be expressed as

2 This problem is somewhat comparable to the case in which a superstructure
needs to be recovered while a substructure is available (e.g. Cascarano et al.,
1987; Cascarano & Giacovazzo, 1988).



m�1�2
�1�2
/ Q2

��1

fjf�j����� exp�i�j���� ÿ ���� exp�2�i��� ÿ ���

� K� � rj�0��g
D Q2
��1

fJ�����ÿm� �2��H� �Uj��

� exp�2�i	j��� ÿ ���m��g
E
: �25�

The average in (25) can be carried out under the assumption

of a prior distribution of the primitive random variables

associated with the vector Uj and the phase parameter 	j.

Concerning the (primitive random variable associated with)

	j, it is assumed that it is uniformly distributed on the interval

[0, 1] and up to order N0 the same conditions for non-zero

moments are obtained as in Peschar & Schenk (1991),

��1 ÿ �1� ÿ ��2 ÿ �2� � 0 with �1 � �2 � �1 � �2 � 2:

This gives the following non-zero moments:

�1 �1 �2 �2 F

1 1 0 0 F�H1�
0 0 1 1 F�H2�
1 0 1 0 F�H1� and F�H2�
0 1 0 1 F�H1� and F�H2�:

�26�

The ®rst two are moments of the individual structure factors

only, the last two involve the doublet terms.

In the case of a single structure factor, �� � �� � 1, for each

moment an orientational average,

hJ2
ÿ1�2��H� �Uj��i; �27�

has still to be carried out because of the presence of Uj in (25).

The calculation of this type of average is discussed in detail in

Appendix A. Expression (27) resembles closely expression

(12) from Lam et al. (1992) although their calculation of the

orientational average is slightly different from the one given

here in Appendix A.

The subsequent operations in the derivation of the joint

probability distribution of structure factors, the moments-

cumulants transformation and summing the contributions of

all N primitive random variables, can be carried out com-

pletely analogously to Peschar & Schenk (1991) and results in

z�� �
PN
j�1

jfj�H��j2hJ2
ÿ1�2��H� �Uj��i: �28�

The moments in (26) involving two structure factors can be

handled in a similar manner. The moments with �1 � �2 � 1

are:

m0 0
1 1 /

Q2
��1

fjfj�j exp�i�j�� exp�2�iK� � rj�0��g

� hJÿ1�2��H1 �Uj��J1�2��H2 �Uj��i: �29�
The calculation of the orientational average present in (29) is

explained in detail in Appendix B.

The remaining steps in the derivation, the moments-

cumulants transformation and the summation of the contri-

butions of all N primitive random variables, are again standard

and result in

z12 �
PN
j�1

Q2
��1

fj�H�� exp�2�iK� � rj�0��
� �

� hJÿ1�2��H1 �Uj��J1�2��H2:Uj��i: �30�

A comparison of the current derivation and the derivation

given in Peschar & Schenk (1991) leads to the conclusion that

the only difference between the distributions resides in the

exact de®nition of the functions z11, z22 and z12. This implies

that the joint probability expression given in Peschar &

Schenk (1991) for two isomorphously related structure factors

{see Peschar & Schenk [1991, equation (60)] with H2 � ÿH1

and s12 � ÿ1 in equation (19)} carries over provided the

appropriate de®nitions of z�� and z12 are used. Thus, the joint

probability distribution of the random variables �1 and �2,

associated with the phases '1 and '2, respectively, and the

random variables R1 and R2, associated with the structure-

factor magnitudes |F1| and |F2|, respectively, can be expressed

as [for the bene®t of this report we use a notation that is

slightly different from that used in Peschar & Schenk (1991)]

P��1; �2;R1;R2� / exp�ÿG2
1 ÿG2

2 � 2G1G2jL12j
� cos��1 � �2 ÿ�12�� �31�

with

L12 � jL12j exp�i�12� � jd12j exp�i�12��1ÿ jd12j2�ÿ1=2

d12 � z12�z11z22�ÿ1=2 � jz12j exp�i�12��z11z22�ÿ1=2

G1 � R1�z11�ÿ1=2�1ÿ jd12j2�ÿ1=2 �32�
G2 � R2�z22�ÿ1=2�1ÿ jd12j2�ÿ1=2 �33�

in which z�� and z12 are de®ned in (28) and (30), respectively.

Eventually, working out (31) in more detail gives the new

expression for the joint probability distribution of two ®rst-

order satellite structure factors in the case of a single sinu-

soidal displacive modulation

P��1; �2;R1;R2� / exp��z11z22 ÿ jz12j2�ÿ1�ÿR2
1z22 ÿ R2

2z11��
� exp�2R1R2jz12j�z11z22 ÿ jz12j2�ÿ1

� cos��1 � �2 ÿ�12��: �34�

The above described expression for the probability distribu-

tion in the case of the presence of a rectilinear modulation is a

simpli®cation of the expression valid in the presence of a

general sinusoidal modulation. The assumption is made that

the phase components 	jk along the three axes are identical

(for k � 1; 2; 3).

The joint probability distribution in the presence of a

general sinusoidal modulation can be obtained in a way similar

to that described for a rectilinear modulation. Expression (31)

again holds and only z�� and z12 need to be rede®ned because

the orientational averages are different. In our investigation,

we only studied the validity of (34), thus using rectilinear

modulations for the randomly generated arti®cial structures

and assuming a rectilinear modulation in our `real structure'

test case.
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3. Comparison of the new distribution (34) and the
Cochran distribution

Before discussing the test results of (34), it is useful to

compare (34) with the standard direct-methods expression of

Cochran [equations (3)±(5)].

3.1. Triplets versus doublets

The triplet phase relationship is the most used phase rela-

tion in direct methods. For incommensurately modulated

compounds with a known (or assumed known) basic structure,

the origin is ®xed and any phase of a main re¯ection is a

seminvariant under these conditions: the phases of the satel-

lites, however, are not ®xed by the main (averaged) structure.

Now consider a doublet of two satellites H1 and H2 with

H1 � �h1; k1; l1; 1� and H2 � �h2; k2; l2;ÿ1�
and with

K1 � �h1; k1; l1; 0� and K2 � �h2; k2; l2; 0�
so

K12 � H1 �H2 � K1 � K2 � �h1 � h2; k1 � k2; l1 � l2; 0�:
The main re¯ection K12 (de®ned this way, with phase '12) is

the third re¯ection in the Cochran triplet relation:

'1 � '2 ÿ '12 � 0:

This is to be compared with the result inferred from (34):

'1 � '2 ÿ�12 � 0:

Once it has been ascertained that �12, closely resembling the

phase of the triplet-related main re¯ection K12, is indeed

(almost) equal to '12, in principle almost all direct-methods

procedures can be used, and in practice in a very powerful way

because all phases '12 are known at the outset.

3.2. Similarity of D12 and u12

The phase of z12 [in (30)] is determined by N atomic

contributions of the form

fj�H1�fj�H2� exp�2�iK12 � rj�0��hJÿ1�2��H1 �Uj��J1�2��H2 �Uj��i:
�35�

This is almost identical to

f 2
j �K12� exp�2�iK12 � rj�0��hJÿ1�2��H1 �Uj��J1�2��H2 �Uj��i:

�36�
Expression (36) can be compared with the atomic contribu-

tions to the structure factor of re¯ection K12,

fj�K12� exp�2�iK12 � rj�0��: �37�
The difference between (36) and (37) is the weighting power

of atom j: for the structure factor it is fj (including the atomic

displacement factor) while for z12 [using (36)] it is

f 2
j hJÿ1�2��H1 �Uj��J1�2��H2 �Uj��i: �38�

The last factor in (38), which describes the in¯uence of the

modulation on the structure factor, often shows in practice as

a (possibly large) pseudo-temperature factor, but it is not

expected to in¯uence the calculated phase of �12 very much.

Therefore, the differences between the phases �12 and '12 are

expected to be very small for equal-atom structures. For

heavy-atom structures, these differences are (almost) entirely

caused by the larger impact of f 2 in (36) relative to f in (37) for

the heavy atoms. If relatively few heavy atoms are present in

the structure, only a few terms in (37) have this enhanced

weight, and the corresponding phase �12 should not differ

much from '12. For strong re¯ections, which are of prime

importance in practical direct methods, most atoms have

similar constructive contributions to both �12 and '12, so again

the difference will be small. Only for weak re¯ections in

heavy-atom structures may signi®cant phase differences be

expected. This is subject to further tests, see x4.

3.3. Normalization

As commonly known, the derivation of the joint probability

distribution of structure-factor magnitudes and phases auto-

matically ends up in an expression in which normalized

magnitudes (|E|'s) are easily recognized. Expressing such a

distribution in terms of E's simpli®es the equations and the

computational procedures. The major properties of E's are: (i)

the average of |E2| is equal to unity; (ii) the `local' average is

independent of the scattering angle; and (iii) the E's appear in

a simple form in the probability equations (e.g. Cochran,

1955). In the present doublet distribution function (34),

property (iii) may not be obvious. Nevertheless, the concept of

normalization is hidden in the formulations. First of all, the

`normalized' average, re (i), is not of any relevance, except

that the observed structure-factor amplitudes are on an

approximately absolute scale. The normalization with respect

to the sin(�) dependency, however, is important in classical

direct methods: the phasing power of a participating re¯ection

depends on its relative intensity (relative to the average

intensity at a given scattering angle) and not at all on its

scattering angle. This normalization aspect is apparent in (34).

Comparing the exponential form in (34) with a similar form

in the Cochran distribution,

2CjE�K1�E�K2�E�ÿK12�j cos�'1 � '2 ÿ '12�; �39�
suggests the de®nitions of normalized structure factors G1 and

G2 and a quasi-normalized magnitude G12, via (32) and (33)

(upon substitution of |d12|):

G1 � F1�z22�ÿ1=2�z11z22 ÿ jz12j2�ÿ1=2 �40�
G2 � F2�z11�ÿ1=2�z11z22 ÿ jz12j2�ÿ1=2 �41�

G12 � z12�z11z22�ÿ1=2 �42�
and we de®ne the structure-invariant triplet factor

K � 2jG1G2G12j � 2jF1F2z12j�z11z22 ÿ jz12j2�ÿ1; �43�
which is present in (34) and plays the same role as � in non-

incommensurate direct methods.

K is expected to be `normalized' with respect to the scat-

tering angle. Both |F1| and |F2| depend on f while z11, z22 and

z12 depend on f 2 so the order dependency on f in |F1F2z12| and



[z11z22 ÿ |z12|2]ÿ1 is the same. We note that G12 can be inter-

preted as a quasi-normalized structure factor of the triplet-

related main re¯ection K12 so the normalization concepts for

normal and modulated structures turn out to be largely

similar. For more details about practical aspects of the

normalization of modulated structures, see Lam et al. (1993).

4. Numerical test procedures

Numerical tests have been performed with structure factors

from several randomly generated non-centrosymmetric and

centrosymmetric structures, with and without heavy atoms,

and with different one-dimensional rectilinear displacive

modulations. All structures have 50 atoms in the unit cell; the

equal-atom structures contain C atoms, the heavy-atom

structures contain also S or Fe atoms. In all cases, main

re¯ections and ®rst-order satellites were generated with

sin(�)=� < 0.75 AÊ ÿ1.

Table 1 shows an overview of the generated structures

together with their code names, compositions and kinds of

modulation. The structures used have the same atomic posi-

tions and code names as used by de Gelder et al. (1996), but

now heavy atoms are introduced and different modulation

functions are used (details given in Table 1). Structure factors

were calculated in the same way as described by de Gelder et

al. (1996)

In addition, we also used a data set that was obtained from

an experimentally determined centrosymmetric structure, but

instead of the measured intensities calculated structure factors

were employed, thus avoiding complications due to an

incomplete data set as published in the literature. The code

name for this structure is PECO; for further details, we refer to

x6.

We distinguish the following triplets:

mmm for a triplet formed by 3 main re¯ections;

ssm for a triplet (or doublet!) formed by 2 satellites and 1

main re¯ection;

sss for a triplet of 3 satellites (not used in this paper).

As a ®rst test, we wished to see the in¯uence of the different

types of modulation as compared to the tests made by de

Gelder et al. (1996). Therefore all our test structures were

subjected to the same calculations as performed by de Gelder

et al. (1996) with the same pseudo-normalized structure-factor

de®nition of Lam et al. (1993). Fig. 1 shows the Cochran

distribution plot [(a) for mmm triplets and (b) for ssm triplets)

as obtained by de Gelder et al. (1996) for `their' structure A1.

Fig. 2 shows the results obtained for `our' structure A1.

The overall statistics depicted in Fig. 1 do not differ

signi®cantly from those in Fig. 2 and similar results were

obtained for other equal-atom test structures.

5. Test calculations I. Comparison of D12 and u12

Earlier it was shown that z12 is associated with the main

re¯ection K12 that completes the triplet phase relationship

H1 �H2 � K12. It was argued that the phase �12 occurring in

(34) is expected to be (for most cases) approximately equal to

the phase '12 of the main re¯ection K12. This is an observation,

which is of importance for the calculation of phase relation-

ships for solving an unknown incommensurate structure with

direct methods. In order to establish whether the doublet

phase-sum estimate �12 equals the known phase '12 of the

main re¯ection K12, some statistics have been made.

Table 2 lists some representative individual phase differ-

ences |�12 ÿ '12| at several K levels for various non-centro-

symmetric structures. Table 3 gives the root-mean-square

(r.m.s.) deviation, �rms, between '12 and �12 for the two non-

centrosymmetric structures. The r.m.s. deviation is de®ned as

�rms �
Pn

1

j'12 ÿ�12j2
� �.

n

� �1=2

with n being the number of doublets participating in a certain

interval of K.
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Table 1
Characteristics of arti®cial non-centrosymmetric (A) and centrosymmetric (C) C50ÿxÿySxFey structures with displacive rectilinear modulations.

The orientational averages were calculated according to Appendices A and B.

Compound code names Composition (in the asymmetric unit) Modulation amplitude² Modulation direction

A1 to A4³ 50 C atoms Random Random
A1a and A3a 50 C atoms Fixed Fixed
A1b to A4b 50 C atoms Fixed Random
A1S6 to A4S6 44 C and 6 S atoms Fixed Random
A1S16 to A4S16 34 C and 16 S atoms Fixed Random
A1Fe6 to A4Fe6 44 C and 6 Fe atoms Fixed Random
A1Fe16 to A4Fe16 34 C and 16 Fe atoms Fixed Random
C1 to C4 25 C atoms Random Random
C1a and C3a 25 C atoms Fixed Fixed
C1b to C4b 25 C atoms Fixed Random
C1S6 to C4S6 22 C and 3 S atoms Fixed Random
C1S16 to C4S16 17 C and 8 S atoms Fixed Random
C1Fe6 to C4Fe6 22 C and 3 Fe atoms Fixed Random
C1Fe16 to C4Fe16 17 C and 8 Fe atoms Fixed Random

² The random amplitude varies between 0.0 and 0.4 AÊ , the ®xed amplitude is 0.2 AÊ . ³ A1 to A4 means Ai, i = 1, 4.



research papers

468 Peschar et al. � Structure-factor doublets Acta Cryst. (2001). A57, 461±472

In Table 4, averages are given of the absolute difference,

|�D|, of the doublet phase sum and its estimate according to

(43):

�D � '1 � '2 ÿ�12 �44�

and the absolute triplet phase sum (ssm case), |�T|,

�T � '1 � '2 � �ÿ'12� �45�

at various K levels and for several non-centrosymmetric

structures. For the centrosymmetric structures, the quantities

PD and PT are given as the percentage of correct doublet signs

and the percentage of correct triplet signs with triplets ranked

according to decreasing K, respectively. For shortness, the

derivation of the joint probability distribution of two ®rst-

order satellite structure factors in the case of a single sinu-

soidal displacive modulation in the centrosymmetric case has

not been given. Its functional form is that of the Cochran &

Woolfson (1955) expression (see footnote 1 in Introduction)

with x(H, H0) being replaced by |F1F2z12=(z11z22 ÿ |z12|2)|.

Table 2
Phase differences |�12 ÿ '12| (in �) vs intervals of the largest K values in
the case of non-centrosymmetric structures.

Structure Interval of K
Individual phase differences
of single doublets

A1 5.0±7.0 0.02 0.81
A1a 9.0±11.0 0.00 0.00
A1b 6.0±10.0 1.18 0.04 1.18
A1S6 13.0±14.0 13.66
A1S16 8.0±9.0 1.71
A1Fe6 18.0±23.0 3.65 0.51
A1Fe16 7.0±8.0 5.66

Table 3
Results of the r.m.s. deviation, �rms, between �12 and '12 for two non-
centrosymmetric structures vs intervals of K.

A1b A1Fe16

K n �rms (�) n �rms (�)

5.0±8.0 11 1.0 34 3.9
4.0±5.0 58 1.2 169 4.7
3.0±4.0 262 2.2 1137 5.0
2.0±3.0 2389 2.2 6799 6.0
1.0±2.0 42349 3.4 80218 7.4
0.0±1.0 39906587 17.7 39863299 28.2

Figure 1
Standard deviation of the triplet phase sum, �(�), as a function of � for
structure A1 as was de®ned in de Gelder et al. (1996). Circles represent
experimental values. Solid curves represent the theoretical distribution
for non-modulated structures according to Cochran. Dashed curves
represent a ®tted curve through experimental points. (a) Standard
deviations involving mmm triplets. (b) Standard deviations involving ssm
triplets.

Figure 2
Standard deviation of the triplet phase sum, �(�), as a function of � for
structure A1 as is de®ned in this study and presented in Table 1. See Fig. 1
for explanations.



Please note that the number of contributions to each

interval (not listed) varies per structure and ranges from

almost 40000000 for the interval with the lowest K values to

just a few per interval for the larger values of K.3

Conclusions from Tables 2 to 4

The phase statistics in Tables 2±4 show that '12 and �12 do

not differ much, especially for the equal-atom cases and at the

larger K values. The average |�12 ÿ '12| for the 15 doublets in

Table 2 is only 2.1� while Table 4 shows that also the average

�D vs �T values and PD versus PT do not differ much.

As expected, the differences are larger for S- and Fe-

containing structures and at the lowest reliability levels (see

Tables 3 and 4). This leads to the conclusion that, keeping the

above restrictions in mind, the G12 acts as a `third' structure

factor that from a practical point of view changes the doublet

into a triplet.

6. Test calculations II. The applicability of the doublet
distribution

We have shown that (34), derived for non-centrosymmetric

structures, can be quite easily calculated, resulting in an

expression that has the same Von Mises form as the Cochran

distribution. The question arises which distribution is best for

the performance of direct methods.

In order to test this, the standard deviation, �(�D), of the

doublet phase differences, �D (44), as a function of K (43) was

compared with the standard deviation, �(�T), of the triplet

phase sum, �T (45), as a function of � (4) [in the latter case

using E values de®ned according to Lam et al. (1993)]. For the

tests, intervals (decreasing in K or �) were chosen to contain

approximately equal numbers of doublets and triplets. The

calculations have been performed for a series of structures but

for shortness only those of A1 are listed in Table 5.4

The behavior of the tested structures is different but the

general trend with respect to the comparison of the cumulative

standard deviations, �(�D) and � (�T), is the same. In order

to show this, in Table 6 an excerpt is given of the cumulative

standard deviations of �D and �T of the approximately 650

and 2700 strongest doublets or triplets, respectively, for all A1

and A3 related test structures.

From the data given in Tables 5 and 6, a tentative conclusion

is possible concerning the quality of (43) compared to the

procedure developed by Lam et al. (1993). At larger K or �
values, the (cumulative) standard deviations are systematically

lower in the case of (43). The structures A1a and A3a, having

®xed modulation amplitude and ®xed modulation direction,

show the above-mentioned tendency most convincingly. Using

the procedure of Lam et al., the standard deviations are large,

even at higher values of � (4), while, with (43), a large

improvement is accomplished. On the other hand, the struc-
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Table 4
Average phase differences (in �), h|�D|i and h|�T|i vs intervals of K in the case of non-centrosymmetric structures.

Percentages (/100) of correct sign relations PT (triplets) and correct sign relations PD (doublets) vs K. Note that for statistical signi®cance only intervals are
reported with 20 or more participating doublets.

A1 A1a A1b A1S6 A1S16 A1Fe6 A1Fe16

K h|�D|i h|�T|i h|�D|i h|�T|i h|�D|i h|�T|i h|�D|i h|�T|i h|�D|i h|�T|i h|�D|i h|�T|i h|�D|i h|�T|i
12.0±24.0 ± ± ± ± ± ± ± ± ± ± 14.3 16.5 ± ±
10.0±12.0 ± ± ± ± ± ± 15.1 17.8 ± ± 17.0 17.1 ± ±
8.0±10.0 ± ± ± ± ± ± 20.5 20.7 ± ± 19.6 20.6 ± ±
7.0±8.0 ± ± ± ± ± ± 24.6 26.1 ± ± 20.0 21.8 ± ±
6.0±7.0 ± ± 40.4 40.4 ± ± 23.4 25.2 25.1 24.5 22.3 22.7 ± ±
5.0±6.0 ± ± 36.8 36.8 ± ± 26.5 28.3 31.1 30.7 23.8 24.1 ± ±
4.0±5.0 28.8 28.3 40.7 40.7 37.0 37.1 29.6 30.7 32.9 32.9 26.7 27.1 24.8 25.5
3.0±4.0 39.4 39.0 46.6 46.4 43.0 42.7 32.8 34.0 37.5 37.0 31.3 31.5 23.7 23.6
2.0±3.0 46.7 46.4 55.6 55.6 49.7 49.4 41.4 42.6 45.8 45.2 38.8 38.9 30.5 30.4
1.0±2.0 61.1 60.8 63.4 63.4 62.3 61.9 53.6 54.6 58.3 57.9 51.0 51.0 44.2 43.9
0.0±1.0 87.2 86.3 86.1 86.1 87.1 86.5 84.3 84.0 86.5 85.7 83.5 82.7 85.3 84.3

C1 C1a C1b C1S6 C1S16 C1Fe6 C1Fe16

K PD PT PD PT PD PT PD PT PD PT PD PT PD PT

8.0±10.0 ± ± ± ± ± ± ± ± ± ± 1.000 1.000 ± ±
7.0±8.0 ± ± ± ± ± ± 1.000 1.000 ± ± 1.000 1.000 ± ±
6.0±7.0 ± ± ± ± ± ± 1.000 1.000 1.000 1.000 0.994 0.994 0.984 0.984
5.0±6.0 ± ± 0.974 0.974 ± ± 0.976 0.958 0.957 0.978 0.985 0.970 0.994 0.994
4.0±5.0 ± ± 0.947 0.947 1.000 1.000 0.948 0.928 0.966 0.966 0.974 0.967 0.966 0.972
3.0±4.0 ± ± 0.850 0.850 0.958 0.958 0.934 0.931 0.935 0.940 0.945 0.941 0.942 0.943
2.0±3.0 0.854 0.858 0.812 0.812 0.855 0.855 0.864 0.852 0.883 0.883 0.886 0.884 0.903 0.901
1.0±2.0 0.766 0.771 0.730 0.730 0.762 0.763 0.772 0.768 0.784 0.785 0.790 0.795 0.809 0.808
0.0±1.0 0.510 0.514 0.515 0.515 0.509 0.512 0.523 0.527 0.520 0.523 0.527 0.535 0.521 0.525

3 The number of contributions to the intervals of K given in Table 4 are typical
values.

4 Results for all other test structures have been deposited and are available
from the IUCr electronic archives (Reference: JS0108). Services for accessing
these data are described at the back of the journal.
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tures A1b and A3b show no improvement using (43) (see

supplementary material).

Since the above-mentioned structures are arti®cial, it would

be useful to perform also a test for experimental data.

Recently, the centrosymmetric incommensurately displacive

modulated structure of PECO [short for (perylene)-

Co(maleonitriledithiolate)2(CH2Cl2)0.5] was determined by

direct methods (Lam et al., 1995). The same structure was also

used in the investigation of the applicability of the Cochran

distribution for incommensurately modulated structures using

the E values de®ned by Lam et al. (1993) (de Gelder et al.,

1996) and provides a ®rst assessment of both approaches. In

Table 7, the percentage (=100) of correct sign relations is listed

when ranked according to K and �=2 (de®ned as x, see foot-

note 1 in Introduction) [using |E| values of Lam et al. (1992,

1993, 1994)], respectively. The data of PECO show a similar

trend to that observed in the arti®cial structures.

Although the reliability of the triplets does not differ too

much from one method to another, at higher K (or x) values

the percentage of correctly predicted sign relations is slightly

larger using (34).

7. Conclusions and discussion

The new doublet probability distribution for incommensu-

rately modulated structures can be used for the determination

of the phases of the satellite re¯ections for those cases where

the atomic positions of the basic structure are known.

The type of modulation assumed at the outset of the present

derivation of the doublet probability distribution leads to the

same statistical behavior as other types of modulations used

in former work on statistical properties of incommensurate

structures [Lam et al. (1992, 1993, 1994, 1995); de Gelder et al.

(1996)].

Under the assumption of a known basic structure, it was

shown that the phase argument of the resulting probabilistic

expression of two ®rst-order satellite re¯ections H1 � K1 � q

and H2 � K2 ÿ q with phases '1 and '2 can be expressed as

Table 6
Cumulative standard deviations (in �) of �D and �T of approximately 650 and 2700 doublets and triplets with the largest K and � values, as ranked
according to decreasing K and �, respectively.

No. of doublets 650 2700 650 2700

Test structure �(�D) �(�T) �(�D) �(�T) Test structure �(�D) �(�T) �(�D) �(�T)

A1 52.6 66.8 60.0 68.7 A3 62.0 66.5 65.2 70.6
A1a 52.4 84.7 57.4 68.5 A3a 50.6 84.3 58.3 69.7
A1b 50.5 55.3 59.3 61.9 A3b 60.1 56.5 65.1 62.4
A1S6 32.9 33.5 38.2 42.0 A3S6 31.9 42.6 35.4 43.1
A1S16 41.8 44.9 46.3 51.0 A3S16 42.9 42.6 46.6 49.6
A1Fe6 24.8 28.0 30.1 32.7 A3Fe6 23.7 41.3 27.8 39.3
A1Fe16 33.9 49.3 38.0 48.9 A3Fe16 40.1 39.2 43.1 43.8

Table 5
Comparison of the standard deviations of �D and �T as calculated using the new distribution (34) (on the left) and the Cochran distribution (4) (on the
right) for the arti®cial structure A1.

Middle of
interval K

�(�D) (�) per
interval

�(�D) (�)
cumulative

Cumulative no.
of doublets

Middle of
interval K

�(�T) (�) per
interval

�(�T) (�)
cumulative

Cumulative no.
of triplets

6.37 35.2 35.2 11 5.19 42.7 42.7 11
4.62 45.5 42.3 32 4.12 60.1 54.9 33
4.05 40.1 41.1 74 3.87 63.1 59.6 75
3.59 47.3 44.5 158 3.58 67.9 64.3 166
3.19 51.6 48.3 331 3.29 61.2 62.7 338
2.79 56.4 52.6 670 3.04 70.5 66.8 680
2.43 60.6 56.7 1335 2.78 65.2 66.0 1388
2.11 63.0 60.0 2720 2.53 71.4 68.7 2740
1.83 69.0 64.6 5424 2.31 75.6 72.2 5479
1.56 73.8 69.5 11220 2.08 76.6 74.5 11157
1.32 76.2 73.0 22694 1.86 78.6 76.6 22594
1.10 79.1 76.1 45069 1.66 80.8 78.7 44586
0.91 82.6 79.5 91691 1.45 83.0 80.9 90424
0.73 85.8 82.8 188378 1.27 85.3 83.2 183139
0.57 88.8 85.9 386547 1.09 87.8 85.5 368002
0.43 91.5 88.8 793164 0.92 90.0 87.8 735907
0.31 93.9 91.4 1621082 0.75 92.4 90.1 1465945
0.21 96.1 93.8 3290097 0.60 94.5 92.3 2912006
0.12 98.5 96.5 7413146 0.45 96.8 94.6 5777485
0.06 100.7 98.7 15508954 0.30 99.0 96.9 12014996
0.02 102.1 100.8 39951656 0.12 102.2 100.7 39951656



�'1 � '2 ÿ�12�. Although the main re¯ection K1 � K2 was

not considered a random variable, the doublet phase-sum

estimate �12 is in most cases closely related to '12, the phase of

the main re¯ection K1 � K2.

It is very important for the success of direct methods that

as much phase information as possible is used in the very

beginning of the procedures, i.e. we need to use many reliable

doublet or triplet phase sums. In this respect, our test results

show that the new doublet distribution is expected to work

well, and that doublets with the largest K values can be used

with con®dence for the phase determination of the satellite

re¯ections.

In most cases, the prior incommensurate information taken

into account, a small sinusoidal displacive modulation with a

magnitude smaller than 0.4 AÊ (or 0.2 AÊ in the case of a ®xed

magnitude), did not lead to a large improvement of the phase

sum statistics. Nevertheless, a large improvement was gained

in the case where both the modulation magnitude and the

modulation direction were ®xed (structures A1a and A3a),

showing the usefulness of the new methodology.

The conclusion from foregoing results (e.g. de Gelder et al.,

1996) that triplets involving satellites are less reliable than

triplets consisting of three main re¯ections still holds in the

sense that at high K levels the number of triplets with two

satellite re¯ections is relatively small. Nevertheless, with the

input of all phases calculated from the known basic structure,

the doublet formula for satellite phases should be suf®ciently

powerful to guarantee the straightforward solution of the

phase problem.

It is suggested for future developments of direct methods

for incommensurately modulated structures to reprogram the

computerized procedures by Lam et al. (1993, 1994, 1995) with

implementation of the newly de®ned quasi-normalized struc-

ture factors [equations (40), (41), (42)].

APPENDIX A
The orientational average hJ2

ÿ1�2��H� �Uj��ihJ2
ÿ1�2��H� �Uj��i

With respect to the orientational average of a function Aorient

involving a triangle between the vectors U and H that can be

oriented arbitrarily in space, two cases can be distinguished:

(i) Both |H| and |U| are known and can be kept ®xed during

the averaging process (Debye, 1915).

(ii) The |H| is known and ®xed but the |U| is distributed (e.g.

uniformly) in a certain interval [0, Umax].

Case I: |U| is ®xed.

Abbreviating p � 2�jHj � jUj and de®ning L to be a

normalization factor, the orientational average can be

expressed as

Aorient � Lÿ1
R2�
0

R�
0

J2
ÿ1�p cos� �� sin� � d d� �46�

L � R2�
0

R�
0

sin� � d d� � 4�: �47�

As a result, Aorient becomes

Aorient � ÿ 1
2

R�
0

J2
ÿ1�p cos� �� dcos� � � R1

0

J2
ÿ1�px� dx: �48�

Expression (48) can be evaluated numerically.

Case II: |U| is uniformly distributed on [0, Um]

The de®nition of the orientational integrals leads to a

normalization factor L as follows:

L � RUm

0

R2�
0

R�
0

r2 sin��� d� d' dr � 4
3�U3

m: �49�

Consequently, the normalized expression of Aorient becomes
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Table 7
Results of the comparison between the Cochran distribution and the new distribution (34).

The percentage (/100) of correct sign relations PD (doublets) as a function of K and correct sign relations PT (triplets) as a function of x (= �/2) for PECO.

Middle of
interval K

PD² per
interval

PD²
cumulative

Cumulative no.
of doublets

Middle of
interval x

PT² per
interval

PT²
cumulative

Cumulative no.
of triplets

11.91 1.000 1.000 11 29.85 1.000 1.000 11
9.51 1.000 1.000 32 20.23 1.000 1.000 32
8.39 1.000 1.000 74 15.98 1.000 1.000 73
7.29 1.000 1.000 155 13.53 0.976 0.987 155
6.20 1.000 1.000 316 11.62 0.994 0.991 318
5.21 1.000 1.000 641 10.07 0.994 0.992 642
4.32 0.997 0.998 1306 8.53 0.989 0.991 1296
3.49 0.992 0.995 2619 6.95 0.993 0.992 2506
2.75 0.977 0.986 5256 5.41 0.981 0.986 5222
2.08 0.961 0.973 10555 4.03 0.974 0.980 10430
1.50 0.934 0.953 21261 2.84 0.958 0.969 20980
1.02 0.875 0.914 42868 1.90 0.920 0.944 41977
0.64 0.795 0.854 86054 1.19 0.847 0.895 85876
0.37 0.688 0.768 179219 0.69 0.742 0.817 175348
0.20 0.588 0.673 378822 0.39 0.635 0.721 373150
0.10 0.526 0.594 822368 0.21 0.566 0.638 796899
0.04 0.503 0.539 2060021 0.10 0.535 0.581 1797331
0.01 0.496 0.506 8677498 0.03 0.512 0.526 8677498

² PD and PT were calculated by determining the ratio between the amount of correct sign relationships and the total amount of sign relationships.
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Aorient � 4�Lÿ1
RUm

0

r2
R1
0

J2
ÿ1�2�jHjrx� dx dr: �50�

Again expression (50) can be evaluated numerically.

APPENDIX B
The orientational average
hJÿ1�2��H1 �Uj��J1�2��H2 �Uj��ihJÿ1�2��H1 �Uj��J1�2��H2 �Uj��i
Orthogonal direct-cell spherical polar coordinates R, �r and �r

with 0 � R <1, 0 � �r � � and 0 � �r � 2� can be related to

the direct-cell coordinates X, Y and Z (all in AÊ ) via the rela-

tions

X � R sin��r� cos��r�
Y � R sin��r� sin��r�
Z � R cos��r�

with X � xa

with Y � yb

with Z � zc:

�51�

Accordingly, a volume element dXdYdZ � dV is changed

into dV � R2 sin(�r) dr d�r d�r and a vector R in the direct cell

is now written as

R � R sin��r� cos��r�e1 � R sin��r� sin��r�e2 � R cos��r�e3

�52�
with e1, e2 and e3 unit length vectors along a, b and c,

respectively. If the cell is not orthogonal, an orthogonalization

should be carried out ®rst.

In a similar way, spherical coordinates Q � |H|, �q, �q, with

0 � Q <1, 0 � �q � � and 0 � �q � 2�, in the orthogonal

reciprocal system can be expressed in terms of the non-

spherical coordinates H, K and L:

H � Q sin��q� cos��q�
K � Q sin��q� sin��q�
L � Q cos��q�

with H � ha�

with K � kb�

with L � lc�:

�53�

Accordingly, a reciprocal vector H can be expressed as

H � Q sin��q� cos��q�e�1 �Q sin��q� sin��q�e�2 �Q cos��q�e�3
�54�

with e�1 , e�2 and e�3 unit length vectors along a�, b� and c�,
respectively.

The scalar product of R and H now becomes

H � R � QR�cos��q� cos��r� � sin��q� sin��r� cos��q ÿ �r��:
�55�

Both H1 � Uj and H2 � Uj can be expressed like (55). Let us

introduce the abbreviations Qi � |Hi| for i � 1, 2 and Rj � |Uj|

so that

Hi �Uj � QiRj�cos��qi� cos��r� � sin��qi� sin��r� cos��qi ÿ �r��;
i � 1; 2:

As a result, the orientational average reduces to a twofold

integration that can be carried out numerically:

Aorient � �4��ÿ1
R�
0

R2�
0

Jÿ1�2�H1 �Uj�J1�2�H2 �Uj� sin��r� d�r d�r:
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